12 research outputs found

    A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods

    Get PDF
    The recent surge in publications related to explainable artificial intelligence (XAI) has led to an almost insurmountable wall if one wants to get started or stay up to date with XAI. For this reason, articles and reviews that present taxonomies of XAI methods seem to be a welcomed way to get an overview of the field. Building on this idea, there is currently a trend of producing such taxonomies, leading to several competing approaches to construct them. In this paper, we will review recent approaches to constructing taxonomies of XAI methods and discuss general challenges concerning them as well as their individual advantages and limitations. Our review is intended to help scholars be aware of challenges current taxonomies face. As we will argue, when charting the field of XAI, it may not be sufficient to rely on one of the approaches we found. To amend this problem, we will propose and discuss three possible solutions: a new taxonomy that incorporates the reviewed ones, a database of XAI methods, and a decision tree to help choose fitting methods

    Building bridges for better machines : from machine ethics to machine explainability and back

    Get PDF
    Be it nursing robots in Japan, self-driving buses in Germany or automated hiring systems in the USA, complex artificial computing systems have become an indispensable part of our everyday lives. Two major challenges arise from this development: machine ethics and machine explainability. Machine ethics deals with behavioral constraints on systems to ensure restricted, morally acceptable behavior; machine explainability affords the means to satisfactorily explain the actions and decisions of systems so that human users can understand these systems and, thus, be assured of their socially beneficial effects. Machine ethics and explainability prove to be particularly efficient only in symbiosis. In this context, this thesis will demonstrate how machine ethics requires machine explainability and how machine explainability includes machine ethics. We develop these two facets using examples from the scenarios above. Based on these examples, we argue for a specific view of machine ethics and suggest how it can be formalized in a theoretical framework. In terms of machine explainability, we will outline how our proposed framework, by using an argumentation-based approach for decision making, can provide a foundation for machine explanations. Beyond the framework, we will also clarify the notion of machine explainability as a research area, charting its diverse and often confusing literature. To this end, we will outline what, exactly, machine explainability research aims to accomplish. Finally, we will use all these considerations as a starting point for developing evaluation criteria for good explanations, such as comprehensibility, assessability, and fidelity. Evaluating our framework using these criteria shows that it is a promising approach and augurs to outperform many other explainability approaches that have been developed so far.DFG: CRC 248: Center for Perspicuous Computing; VolkswagenStiftung: Explainable Intelligent System

    Explainable software systems: from requirements analysis to system evaluation

    Get PDF
    The growing complexity of software systems and the influence of software-supported decisions in our society sparked the need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects. However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by proposing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for explainable systems. These artifacts should support software and requirements engineers in understanding the definition of explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the identification of methods and metrics for the evaluation of the implemented requirements

    Explainable software systems: from requirements analysis to system evaluation

    Get PDF
    The growing complexity of software systems and the influence of software-supported decisions in our society sparked the need for software that is transparent, accountable, and trustworthy. Explainability has been identified as a means to achieve these qualities. It is recognized as an emerging non-functional requirement (NFR) that has a significant impact on system quality. Accordingly, software engineers need means to assist them in incorporating this NFR into systems. This requires an early analysis of the benefits and possible design issues that arise from interrelationships between different quality aspects. However, explainability is currently under-researched in the domain of requirements engineering, and there is a lack of artifacts that support the requirements engineering process and system design. In this work, we remedy this deficit by proposing four artifacts: a definition of explainability, a conceptual model, a knowledge catalogue, and a reference model for explainable systems. These artifacts should support software and requirements engineers in understanding the definition of explainability and how it interacts with other quality aspects. Besides that, they may be considered a starting point to provide practical value in the refinement of explainability from high-level requirements to concrete design choices, as well as on the identification of methods and metrics for the evaluation of the implemented requirements

    Spare me the details: How the type of information about automated interviews influences applicant reactions

    Get PDF
    Applicants seem to react negatively to artificial intelligence-based automated systems in personnel selection. This study investigates the impact of different pieces of information to alleviate applicant reactions in an automated interview setting. In a 2 (no process information vs. process information) × 2 (no process justification vs. process justification) between-subjects design, participants (N = 124) received respective information and watched a video showing an automated interview. Testing mediation effects via different applicant reaction variables indicated that process justification is better than process information which can even impair applicant reactions. However, information did not increase organizational attractiveness compared to not receiving any information. This study sheds light on what type of information contributes to positive and negative applicant reactions to automated systems

    What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research

    Get PDF
    Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability approaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems (we call these stakeholders' desiderata) in a variety of contexts. However, the literature on XAI is vast, spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability approaches are supposed to achieve the goal of satisfying stakeholders' desiderata. This paper discusses the main classes of stakeholders calling for explainability of artificial systems and reviews their desiderata. We provide a model that explicitly spells out the main concepts and relations necessary to consider and investigate when evaluating, adjusting, choosing, and developing explainability approaches that aim to satisfy stakeholders' desiderata. This model can serve researchers from the variety of different disciplines involved in XAI as a common ground. It emphasizes where there is interdisciplinary potential in the evaluation and the development of explainability approaches.Comment: 57 pages, 2 figures, 1 table, to be published in Artificial Intelligence, Markus Langer, Daniel Oster and Timo Speith share first-authorship of this pape

    Explainable Artificial Intelligence (XAI) 2.0: A Manifesto of Open Challenges and Interdisciplinary Research Directions

    Full text link
    As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper not only highlights the advancements in XAI and its application in real-world scenarios but also addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. Our goal is to put forward a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 27 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders

    Explainable Artificial Intelligence (XAI) 2.0: A Manifesto of Open Challenges and Interdisciplinary Research Directions

    Get PDF
    As systems based on opaque Artificial Intelligence (AI) continue to flourish in diverse real-world applications, understanding these black box models has become paramount. In response, Explainable AI (XAI) has emerged as a field of research with practical and ethical benefits across various domains. This paper not only highlights the advancements in XAI and its application in real-world scenarios but also addresses the ongoing challenges within XAI, emphasizing the need for broader perspectives and collaborative efforts. We bring together experts from diverse fields to identify open problems, striving to synchronize research agendas and accelerate XAI in practical applications. By fostering collaborative discussion and interdisciplinary cooperation, we aim to propel XAI forward, contributing to its continued success. Our goal is to put forward a comprehensive proposal for advancing XAI. To achieve this goal, we present a manifesto of 27 open problems categorized into nine categories. These challenges encapsulate the complexities and nuances of XAI and offer a road map for future research. For each problem, we provide promising research directions in the hope of harnessing the collective intelligence of interested stakeholders
    corecore